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We consider the slow motion of viscous fluid completely filling a rectangular container.
The motion is generated by the combined action of differential wall temperatures and
the linear motion of the lid. If the relevant Reynolds and Péclet numbers and the lid
speed are all small enough, the velocity field will be governed by an inhomogeneous
biharmonic equation. In this approximation the temperature field, unaffected by the
fluid motion, drives, at least in part, the fluid velocity field. Of interest here are
the relative effects of buoyancy and lid motion. It is shown that the field, suitably
scaled, depends on the dimensionless depth and lid speed alone. The mixed convection
problem is solved for two pairs of wall heating protocols by sequentially solving, by
an eigenfunction expansion method, up to four biharmonic problems. We present
streamline patterns and quantitative data on the relative effects of lid motion on the
buoyancy-driven fields in these containers.

1. Introduction
We are concerned in this paper with fluid motions in rectangular containers which

are induced, possibly simultaneously, by both buoyancy and the motion of the lid of
the container. The motivation, although this aspect will not be pursued very far here,
is that the fluid motion caused by one of the agents may possibly be controlled by
the effective use of the other. There are a number of materials processing systems in
which buoyancy-driven fluid motions play a critical role (Jaluria 2001). For example,
the flows that arise in molten crystals strongly affect the quality of the crystals that are
obtained and hence of the semiconductors fabricated from them. In casting processes,
buoyancy-driven flows in the liquid melt can seriously influence the microstructure
of the casting. The present investigation yields qualitative and quantitative data on
flows which model these processes well and suggests a method for their control.

We will assume in this investigation that the temperature differences are small
enough and the fluid thermal conductivity high enough that to a first approximation
the temperature field is unaffected by the fluid motion; the latter will be assumed
slow enough that inertial effects can be consistently ignored in this approximation.

Viscous liquid completely fills a rectangular container of lateral width Ã and
depth D̃. The container walls are maintained at constant but not necessarily uniform
temperatures T̃ T , T̃ R , T̃ B and T̃ L respectively while the lid moves at constant speed
Ṽ 0(y) in the y-direction; gravity acts downwards in the positive x-direction. If the
four wall temperatures are not uniform and equal, density variations in the liquid
caused by gradients in the temperature will induce slow fluid motion even if the lid



204 P. N. Shankar, V. V. Meleshko and E. I. Nikiforovich

is stationary. In this framework the questions we wish to address are: (i) how does
the primary eddy system depend on the type of wall heating that is applied, (ii) are
there corner eddies and if so at which corners and how are they affected by the wall
heating and (iii) how do changing the cavity depth D̃ and the lid velocity Ṽ 0 modify
the eddy structure in the cavity?

A few papers have appeared in the literature which consider buoyancy-driven
Stokes flows in frameworks similar to the one we consider here. In a 1975 paper
Joseph & Sturges calculate, using domain perturbation theory, the shape of the free
surface of a liquid in a trench subjected to sidewall heating. The free-surface problem
is particularly suited to the application of biorthogonality relations to the relevant
biharmonic eigenfunctions and Joseph & Sturges exploit this. For an infinitely deep
trench with one of the sidewalls heated and the top insulated, the coefficients in
the expansion for the stream function can be found explicitly; they find a single
primary eddy in the trench. The same result is found for trenches of finite depth
with the bottom also insulated; in this case however the biorthogonality relations
lead to an infinite system of equations for the coefficients which need to be solved by
truncation. For trenches of finite depth Joseph & Sturges are silent on the issue of
the existence of corner eddies at the bottom corners. Liu & Joseph (1977) extended
this analysis, using the same techniques, to similar motions in wedge-shaped trenches.
Here, however, they explicity point out the absence of corner eddies at the apex of
the wedge, correcting a commonly held but incorrect view that such eddy systems
must always exist at all sharp corners. In the thermally driven flow considered by Liu
& Joseph the outer flow generated by the particular solution dominates the corner or
edge eddies generated by the complex eigenfunctions of the homogeneous solution,
leading to a suppression of the corner eddy system. Yu & Nansteel (1990), however,
show that if the wedge angle is between approximately 126◦ and 146◦ corner eddies
may be present near the apex if the top boundary is of the no-slip rather than the
free-shear type.

While the present work also considers buoyancy-driven creeping motions, it is quite
different from the above studies both in motivation and the type of results obtained.
Our motivation is in estimating to what extent the lid motion can modify the flow
structure set up by thermal convection. This aspect was not considered in the earlier
investigations. Moreover, we will show that even the primary eddy structure can be
very different from the very simple unicellular structures seen earlier. This is because
temperature boundary conditions on all four walls, rather than adiabatic conditions
on one or a pair of walls as in the earlier studies, can lead to far more complex
temperature fields and consequently to more complex convection fields. It will also be
shown that corner eddies may, indeed, be present in these buoyancy-driven motions.

2. Formulation and analysis
We assume the rectangular container to be completely filled with a Newtonian

fluid whose coefficient of thermal expansion β is small. We also assume that all fluid
properties are constant. Let T̃ 0 be a constant reference temperature and let β be
the coefficient of thermal expansion about this temperature. In the problems that we
will be considering there is a wall temperature scale T̃ 1 (> T̃ 0) and consequently a
temperature difference ∆T̃ 0 = T̃ 1 − T̃ 0. It will prove convenient to work with the
dimensionless temperature θ defined by θ = (T̃ − T̃ 0)/(T̃ 1 − T̃ 0). Let us now choose
the container width Ã and the reference density ρ̃0 as the scales for length and density
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respectively and define

q̃0 = gρ̃0Ã
2
β∆T̃0/µ (1)

as the velocity scale. Having chosen these, the scales for the time and pressure are
t̃0 = Ã/q̃0 and p̃0 = µq̃0/Ã.

If the differential heating on the walls is not too large, we can treat the fluid
as incompressible with the density changes affecting the buoyancy alone. In the
Boussinesq approximation (Chandrasekhar 1961), the two-dimensional equations of
continuity, momentum, energy and state take the form

∇ · v = 0, (2a)

(1− β∆T̃ 0θ) Re
Dv

Dt
= −∇p− θêx + ∇2v, (2b)

(1− β∆T̃ 0θ) Pe
Dθ

Dt̃
= −∇̃2θ, (2c)

ρ = 1− β∆T̃ 0θ, (2d)

where the tilde-less quantities are the dimensionless field variables. In the above, p is
the pressure over and above the hydrostatic pressure, Re = ρ̃0q̃0Ã/µ is the Reynolds
number and Pe = ρ̃0cpq̃0Ã/k is the Péclet number relevant to this buoyancy-driven
field. In this paper we are primarily interested in the situation where the steady fluid
motion is slow enough and the fluid thermal conductivity high enough that the inertial
terms in both the momentum and energy equations can be neglected. More precisely
we allow Re→ 0 and Pe→ 0 in equations (2); moreover, in the mixed convection
case we will assume V0 < q0 so that these dimensionless quantities when based on the
lid velocity will also be vanishingly small. Under these circumstances the governing
field equations reduce to the linear system

∇ · v = 0, (3a)

∇2v = ∇p+ θêx, (3b)

∇2θ = 0. (3c)

Eliminating the continuity equation through the use of a stream function ψ(x, y),
u = ψy , v = −ψx, we obtain a single equation for the stream function

∇4ψ = θy. (4)

Thus the velocity field is governed by an inhomogeneous biharmonic equation which
shows that, boundary forcing apart, the field is driven by the known temperature
field.

Before considering the boundary conditions that will come into play let us define
a symmetric function f(x;D, δ) on [−D/2, D/2] by

f(x;D, δ) =

{
1 0 6| x |6 (D/2− δD)

0.5{1 + cos[π(x− (D/2− δD))/δD]} (D/2− δD) <| x |6 D/2. (5)

If δ is small the function is equal to 1 over most of the interval and then falls smoothly
to 0 near the end points. We shall in this paper be considering four types of wall
temperature protocols:

Case A: left-hand wall heated and the other walls at ambient, i.e. θL = f(D/2− x;
D, δ), θR = θT = θB = 0;
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Case B: left-hand wall heated, right-hand wall cooled and the other walls at
ambient, i.e. θL = −θR = f(D/2− x;D, δ)/2, θT = θB = 0;

Case C: top wall heated and the other walls at ambient, i.e. θT = f(y; 1, δ), θR =
θL = θB = 0;

Case D: top wall heated, bottom wall cooled and the other walls at ambient, i.e.
θT = −θB = f(y; 1, δ)/2, θR = θL = 0.

We shall always take the velocity of the lid to be given by v(0, y) = V0(0, y) =
v0f(y; 1, δ) where v0 is a constant. It should be noted that we have chosen all
boundary data to be continuous and smooth. This is not essential as is known from
Srinivasan (1995), Meleshko (1996) and the discussion in Shankar & Deshpande
(2000). Our choice here has been made so that convergence of all relevant series will
be more rapid than if the boundary data were non-smooth or discontinuous.

Each in the pairs (A,B) and (C,D) seem so similar that it may seem sufficient to
consider one in each pair alone. But we shall show in what follows that there are
surprising differences in the flow fields. In order to keep the number of parameters at
a minimum all the results here have been obtained with δ = 0.1.

We shall now outline the procedure used to solve the mixed-convection problems
formulated above. Specifically this will be done for Case C with the understanding
that the same procedure applies to the other cases with only minor differences in the
details. If the top wall alone is heated, it is easy to show that the temperature field
has the Fourier series representation

θ(x, y) =

∞∑
n=1

γn
sinh σn(D − x)

sinh σnD
cos σny, (6)

where σn = (2n− 1)π, γn = γ̂(n, δ) and γ̂(n, δ) are the Fourier coefficients of f(x;D, δ).
From (4) the stream function ψ(x, y) now has to satisfy the inhomogeneous biharmonic
equation

∇4ψ = −
∞∑
n=1

γ′n sinh σn(D − x) sin σny, (7)

where γ′n = γnσn/ sinh σnD, n = 1, 2, 3, . . . .

We will require the stream function ψ(x, y) to vanish on all four walls of the
container and the tangential velocity to vanish on the sidewalls and the bottom wall;
on the top wall we require the v-component of the fluid velocity to equal the lid
speed.

First we write down a solution ψi(x, y) of the inhomogenous equation (7):

ψi(x, y) = −
∞∑
n=1

γ′n
8σ2

n

x2 sinh σn(D − x) sin σny. (8)

If we now write ψ = ψi + ψh, ψh has now to be biharmonic and the problem has
been reduced to one of finding a biharmonic function in the rectangle satisfying
given boundary data. Among the methods suggested in the literature for solving the
biharmonic problem in the rectangle we mention the use of biorthogonal series (Joseph
& Sturges 1975), the use of boundary integrals (Pozrikidis 1994), the superposition
method (Meleshko 1996) and direct numerical computation (Pan & Acrivos 1967;
Tuann & Olson 1978). However, since the geometry here is a simple one and we wish
to keep the numerical work to a minimum the direct eigenfunction expansion method
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seems to be particulary suitable. The procedure followed in Shankar (1993) is utilized
here and the reader is referred to that paper for details.

We write ψ as the sum of the above inhomogeneous solution and a pair of
biharmonic functions, ψ = ψi + ψ1 + ψ2, i.e. ∇4ψ1 = ∇4ψ2 = 0. Moreover, ψ1 and ψ2

each satisfy homogeneous boundary conditions on pairs of walls, ψ1 = ψ1
y = 0 on

y = ± 1
2

and ψ2 = ψ2
x = 0 on x = 0 and x = D.

Recall the biharmonic eigenfunctions related to symmetric and skew-symmetric vel-
ocity fields respectively (Moffatt 1964): φ±s (x, y) = {y cos λsy− 1

2
cot(λs/2) sin λsy} exp±

λsx and φ±a (x, y) = {y sin λay − 1
2

tan(λa/2) cos λay} exp±λax where where the eigen-
values λs and λa satisfy sin λs = λs, sin λa = −λa respectively.

The idea now is to write ψ1 as the sum of parts symmetric and skew-symmetric in
y respectively and ψ2 as the sum of parts symmetric and skew-symmetric in D/2− x
respectively, i.e. ψ = ψ1

s + ψ1
a + ψ2

s + ψ2
a . We can now formally expand ψ1

s and ψ1
a as

follows:

ψ1
s (x, y) = Re

∑
n

{anφ+
s (x, y) + bnφ

−
s (x, y)}, (9a)

ψ1
a(x, y) = Re

∑
n

{cnφ+
a (x, y) + dnφ

−
a (x, y)}, (9b)

in terms of the symmetric and skew-symmetric eigenfunctions respectively. If the
boundary conditions on ψ1 are now decomposed into parts symmetric and skew-
symmetric in y the boundary conditions required on ψ1

s and ψ1
a will be obtained.

The unknown complex coefficients an, bn, cn and dn can then be obtained by the least-
squares procedure suggested in Shankar (1993). The method has been shown to work
accurately and efficiently on a number of different Stokes flow problems (Shankar &
Deshpande 2000). The same procedure can be applied to ψ2

s and ψ2
a .

It should be noted that, as formulated here, there are only two physical parameters
that affect the field, the depth D and the lid speed v0.

3. Discussion of the results
First, we applied the present method to the problem considered by Joseph &

Sturges (1975). Here the right-hand wall is hotter than the left-hand wall while the
top and bottom walls are insulated. In this case θ(x, y) = 0.5 + y and so we can take
ψi(x, y) = x4/24 and go through the suggested procedure with v0 = 0, since here we
are only considering natural convection. As found earlier by Joseph & Sturges, we
find for all depths that there is a single primary eddy with no apparent fine structure
in it. However, we do find corner eddies at all four corners of the container because
of the much larger number eigenfunctions that we have used (200 as against 9); the
primary interest in Joseph & Sturges (1975) was in computing the free surface of
the liquid not in the corner eddies. In what follows we will concentrate on the four
cases enumerated in § 2. We dispose of the less interesting Cases A and B first before
dealing with the more interesting Cases C and D.

3.1. Sidewall heating, Cases A and B

If the left-hand wall alone is heated, the temperature field has the Fourier series
representation

θ(x, y) =

∞∑
n=1

γn sinh σn(0.5− y) cos σn(x− D/2)/ sinh σn,
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Figure 1. Buoyancy-induced convection when the left-hand wall alone is heated and the other
three walls are at ambient temperature (Case A). (a) D = 0.5 and (b) D = 1.

where σn = (2n− 1)π/D, γn = γ̂(n, δ) while the inhomogeneous solution is given by

ψi(x, y) = −
∞∑
n=1

γny
2 cosh σn(0.5− y) cos σn(x− D/2)/8σn sinh σn.

A check on the boundary conditions reveals that ψ2 is symmetric about x = D/2
and hence ψ2

a is superfluous in this case – we need only carry out three biharmonic
calculations. Figure 1 shows the streamline patterns of natural convection (v0 = 0) for
containers of depth 0.5 and 1; calculations for deeper and shallower containers show
the same pattern. In all cases there is a single primary eddy with the fluid moving
upwards near the hot wall and returning, as might be expected, downwards near the
cold right-hand wall. For small depths the centre of the primary eddy is always closer
to the hot wall but, again as might be expected, it moves closer and closer to the
centreline as the depth increases; note that there is no symmetry about the mid-plane
y = 0. Now one would also expect the effect of the hot left-hand wall in driving the
circulation to increase as the depth increases. This is seen quantitatively in table 1
which shows that the magnitude of the stream function near the eddy centre does
indeed increase with depth.
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Depth D Case A Case B Case C Case D

0.25 1.129× 10−5 3.848× 10−4

0.5 1.533× 10−4 8.497× 10−5 7.345× 10−5 7.199× 10−4

1 1.085× 10−3 1.052× 10−3 1.666× 10−4 1.199× 10−3

2 2.466× 10−3 2.465× 10−3 1.718× 10−4 1.477× 10−3

4 2.607× 10−3 2.607× 10−3 1.718× 10−4 1.492× 10−3

Table 1. Stream function magnitudes |ψ| at the centres of the primary eddies in buoyancy-driven
convection.

Of interest is the fact that corner eddies are visible at all the corners and for all
depths. It should be noted that the velocity field can be conveniently thought of as
being a superposition of a flow induced by the buoyancy and a field generated by the
complex eigenfunctions needed to eliminate the induced field on the boundaries. Now
the latter have the potential to both generate primary eddies in deep cavities (Shankar
1993) and generate corner eddies. In this case, new primary eddies are not generated
because the non-decaying real inhomogeneous field always dominates, in the core of
the flow, the decaying field generated by the complex eigenfunctions. However, near
all the corners, in this case, the roles are reversed and the corner eddies appear.

The possibility of controlling these flows is illustrated in figure 2 for the case of
a cavity of depth 0.5. The circulation set up by natural convection is clockwise and
we might ask how fast must the lid move to the left in order to significantly reduce
the natural circulation. It can be seen from the figure that the moving lid generates
an eddy, initially centred near the right-hand wall, which gradually penetrates the
cavity as the lid speed increases. Whereas the corner eddy at the top right disappears
immediately, the one at the top left appears to become a free eddy while gradually
losing its strength. We observe that whereas most of the field is similar to one
associated with a flow driven by the lid alone when v0 = −0.01, the thermal primary
eddy is still there near the left-hand corner. The maximum fluid speed in thermal
convection alone is of the order of 0.001; note that even when there is a significant
counter-circulation driven by the lid (v0 = −0.001) the thermally driven convection
near the eddy centre is hardly affected.

In Case B, the left-hand wall is heated and the right-hand wall cooled while the net
temperature difference between the left-hand wall and the right-hand wall is the same
as in Case A; but now the temperatures of the top and bottom walls are a mean of
those of the sidewalls. The temperature field is now given by

θ(x, y) =

∞∑
n=1

γn sinh σny cos σn(x− D/2)/sinh σn/2,

where σn = (2n− 1)π/D, γn = −γ̂(n, δ)/2; the inhomogeneous solution in this case is
given by

ψi(x, y) =

∞∑
n=1

γny
2 cosh σny cos σn(x− D/2)/8σn sinh (σn/2).

Examination of the boundary conditions reveals that there is even greater symmetry
in this case than obtained in A. In fact we only need the symmetric parts of ψ1 and
ψ2 and consequently one needs to only solve two, rather than four, biharmonic
problems to resolve the mixed convection problem. The streamline patterns in natural
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Figure 2. Mixed convection in a cavity of depth D = 0.5 when the left-hand wall alone is heated.
(a) v0 = −0.0001, (b) v0 = −0.001 and (c) v0 = −0.01.

convection, i.e. with v0 = 0, are shown in figure 3 for D = 0.5 and D = 1; for greater
depths the structure is as in the square case. In the latter cases, as expected there is a
single primary eddy in each case with the eddy centre at the geometric centre of the
container. However, there is a surprise: in the case of a shallow container of depth
0.5 the primary eddy, rather than being a simple centre, has additional structure. The
primary eddy contains two sub-eddies whose centres are connected by a saddle. Also,
as in A there are corner eddies at all four corners.

The case of mixed convection in the shallower cavity is illustrated in figure 4. The
extra symmetry in this case seems to lead to some differences from what was seen in
figure 2. At the lowest speed considered the lid-driven circulation displays two centres
connected by a saddle as opposed to a single unsymmetrically placed centre seen in
figure 2. Although these are not resolved fully here, there are symmetrically placed
free eddies at the upper corners, and corner eddies at the lower corners. When the lid
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Figure 3. Streamline patterns in buoyancy-induced convection when the left-hand wall is heated
and the right-hand wall cooled with respect to the top and bottom walls (Case B). (a) D = 0.5 and
(b) D = 1.

speed is increased, we see in frame (b) that the circulatory region near the lid contains
a single centre but the free eddies near the upper corners remain. The latter appear
to have finally disappeared in frame (c), but even here, where the flow resembles that
due to the lid motion alone over most of the field, the thermal eddies remain near the
lower corners.

3.2. Top and bottom wall heating, Cases C and D

The details of Case C were discussed in § 2, where the temperature field was given
by (6) while an inhomogeneous solution was displayed in (8). Unlike the previous
cases, the solution of the mixed-convection problem requires the solution of all four
biharmonic problems.

We begin by looking at the streamline patterns in buoyancy-induced convection
alone, figure 5. For all depths we have two counter-rotating primary eddies. This is
to be expected since the boundary conditions are symmetric about y = 0. As in the
previously considered cases the real inhomogeneous field does not decay exponentially
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Figure 4. Mixed convection in a cavity of depth D = 0.5 when the left-hand wall is heated and the
right cooled with respect to the top and bottom walls. (a) v0 = −0.0001, (b) v0 = −0.001 and (c)
v0 = −0.01.

with depth and so it dominates the contribution from the complex eigenfunctions;
as a result we do not find more primary eddies with increasing depth. A new feature
here is that we find corner eddies only at the bottom corners; either they do not exist
at the top corners or they are too small there to be resolved with this level of effort.

How does the strength of the circulation depend on the depth? If we go back
to table 1. we observe that the magnitude of ψ at the eddy centre is generally an
increasing function of depth. This can be understood if we recall that if the sidewalls
were infinitely far away the initial stratification would be stable and there would be
no flow whatsoever. The flow takes place only because there are cooler sidewalls and
the closer they are the greater would be the circulation.

Mixed convection in a cubical cavity with a hot top lid is considered in figure 6.
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Figure 5. Streamline patterns in buoyancy-induced convection when the top wall alone is heated
and the others are at ambient temperature (Case C). (a) D = 0.25, (b) D = 1 and (c) D = 4.

There are no surprises here: the lid-driven circulation simply enhances one of the
counter-rotating thermal eddies while diminishing the other. With increasing lid speed
the enhanced eddy moves to the centreline while the other is compressed into one
corner.

In Case D the top wall is heated and the bottom wall cooled with respect to
the sidewalls. As a consequence, unlike in Case C, the stream function in natural
convection has to be antisymmetric about x = D/2 also. This can also be inferred
from equation (4). The temperature field is now given by

θ(x, y) =

∞∑
n=1

γn sinh σn(D/2− x) cos σny/sinh σnD/2,

where σn = (2n − 1)π, γn = γ̂(n, δ)/2. A suitable inhomogeneous solution, with the
right symmetry, for this case is

ψi(x, y) =

∞∑
n=1

γ′ny
2 sin σny sinh σn(D/2− x)/8σ2

n ,

where the γ′n are scalars.
The streamline patterns in buoyancy-induced convection are shown in figure 7. We

now have symmetry about both vertical and horizontal mid-planes and so generally
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Figure 6. Mixed convection in a cavity of unit depth when the top wall alone is heated.
(a) v0 = 0.001, (b) v0 = 0.01 and (c) v0 = 0.1.

there are four counter-rotating eddies. How the eddy strengths vary with depth can
be inferred from the values of |ψ| at the eddy centres given in table 1: as in Case
C these values increase with depth though the levelling off is slower. Note also that
the magnitudes are generally about an order of magnitude larger. Another difference
is the absence of corner eddies; they are either very weak or absent in this case.
The shallow container of depth 0.25 displays a feature not seen in the other cases:
the appearance of two more pairs of counter-rotating eddies near the centre of the
container. These are much weaker than the ones near the sidewall, the maximum |ψ|
values being about 6.5× 10−8 as opposed to about 3.5× 10−4 near the sidewalls. As
the container depth becomes smaller and smaller we would expect the field near the
vertical centreplane to approximate that of the quiescent field in a stably stratified
liquid. Figure 7(a) shows that this will be achieved by having a series of very weak
eddies away from the sidewalls together with the relatively stronger sidewall eddies
confined to the neighbourhood of the sidewalls.

Mixed convection in a shallow container of depth 0.25 is displayed in figure 8.
Even at very low lid speeds the four-celled topology seen in the previous figure is
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Figure 7. Streamline patterns in buoyancy-induced convection when the top wall is heated and the
bottom wall cooled with respect to the sidewalls at ambient temperature (Case D). (a) D = 0.25,
(b) D = 1 and (c) D = 4.

changed considerably. As seen in panel (a), in order to accommodate the lid-driven
circulation the cells on the upper right and the lower left combine to form a single
eddy containing both centres but now connected by a saddle. Moreover, in order to
permit the turning of the flow the upper right-hand eddy now contains another centre
about which the flow turns. With further increases in lid speed the upper left-hand
eddy is continuously diminished, although even for v0 = 0.1 it is still present. Since
the cavity is shallow, as low a lid speed as 0.01 is sufficient to almost completely erase
the effects of thermal convection.

4. Conclusion
We have considered in this paper the combined effects of buoyancy and lid motion

on the flow field in a viscous fluid completely filling a rectangular container. When
the forces generating the fluid motion are not too strong, the slow motion has been
shown to be governed by an inhomogeneous biharmonic equation for the stream
function. The forcing here is due to the buoyancy and in this approximation the
known temperature field drives the fluid motion. It has been shown that the mixed-
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Figure 8. Mixed convection in a cavity of depth D = 0.25 when the top wall is heated and the
bottom wall cooled. (a) v0 = 0.0001, (b) v0 = 0.01 and (c) v0 = 0.1.

convection problem can be conveniently solved by solving a sequence of biharmonic
boundary value problems using the natural complex eigenfunctions for this geometry.

Suitable non-dimensionalization shows that the flow field depends on only two
parameters: the dimensionless depth and the dimensionless lid speed. In order to
illustrate the different phenomena that can occur we have considered four different
cases of wall heating and for each case the effects of changing the depth and the lid
velocity have been studied. By and large, sidewall heating leads to simple fields whose
structures can be inferred from elementary physical reasoning. When the heating or
cooling of the top and bottom walls generates the motion, the flow fields are much
more complex. Small changes in the wall temperature protocols lead to changes in
the eddy topology.

Apart from the interesting and new qualitative features of eddy structure that have
been found in this investigation, the detailed results on mixed convection should be
useful in examining the possibility of controlling these motion. Specifically, the results
presented here suggest the magnitudes of the lid velocities that would be necessary
to effect significant changes in the thermally driven circulation. We have not however
pursued this idea very far here.

The work reported above was done as a part of the Indo–Ukraine Joint Research
Project entitled “Vortex structures and heat transfer in driven cavities”. We gratefully
acknowledge the support of the Ukrainian and Indian governments. P. N. S. would
like to thank Ms D. Shobha for help in the preparation of the manuscript. We would
also like to thank an anonymous referee for pointing out that the results for Case D
were in error in the first version of this paper.
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